

TEAM II: BONFANTI | CLARKE | COX | WIACEK

1

Team Workflow

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Building Overview

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Team Workflow

Phase I :FaçadePhase II:CogenerationPhase III:Lateral SystemPhase IV:Distribution Systems
and Coordination

Results and Conclusions

Building Overview

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Team Workflow

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Building Overview

Building:	52 story office buildin
	1.5 Million SF

Location: 8th Avenue & 41st Street, Manhattan

ng with ground floor retail

Team Workflow

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Building Overview

Building:	52 story office buildin 1.5 Million SF
Location:	8 th Avenue & 41 st Stre

Cost: Approximately \$1 Billion (2007)

TEAM II: BONFANTI | CLARKE | COX | WIACEK

ng with ground floor retail

- eet, Manhattan

Team Workflow

Phase I :FaçadePhase II:CogenerationPhase III:Lateral SystemPhase IV:Distribution Systems
and Coordination

Results and Conclusions

Building Overview

Building:	52 story office buildir 1.5 Million SF
Location:	8 th Avenue & 41 st Str
Cost:	Approximately \$1 Bil
Architect:	Renzo Piano Building FXFowle Gensler (Interiors)

TEAM II: BONFANTI | CLARKE | COX | WIACEK

ng with ground floor retail

- reet, Manhattan
- llion (2007)
- g Workshop

Team Workflow

Phase I :FaçadePhase II:CogenerationPhase III:Lateral SystemPhase IV:Distribution Systems
and Coordination

Results and Conclusions

Building Overview

TEAM II: BONFANTI | CLARKE | COX | WIACEK

52 story office buildin 1.5 Million SF
8 th Avenue & 41 st Stre
Approximately \$1 Bill
Renzo Piano Building FXFowle Gensler (Interiors)
Thornton Tomasetti Flack + Kurtz

ng with ground floor retail

- eet, Manhattan
- llion (2007)
- g Workshop

Team Workflow

Phase I :FaçadePhase II:CogenerationPhase III:Lateral SystemPhase IV:Distribution Systems
and Coordination

Results and Conclusions

Building Overview

Building:	52 story office buildin 1.5 Million SF
Location:	8 th Avenue & 41 st Sti
Cost:	Approximately \$1 Bi
Architect:	Renzo Piano Buildin FXFowle Gensler (Interiors)
Engineer:	Thornton Tomasetti Flack + Kurtz
CM:	Amec (Core + Shell) Turner (Interiors)

TEAM II: BONFANTI | CLARKE | COX | WIACEK

ing with ground floor retail

- reet, Manhattan
- llion (2007)
- ng Workshop

Team Workflow

Phase I :FaçadePhase II:CogenerationPhase III:Lateral SystemPhase IV:Distribution Systems
and Coordination

Results and Conclusions

Building Overview

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Team Workflow

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Building Overview

Configuration of Spaces

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Team Workflow

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Building Overview

Configuration of Spaces

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Team Workflow

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Building Overview

Configuration of Spaces

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Team Workflow

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Building Overview

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Team Workflow

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Building Overview

Configuration of Spaces

The New York Times

Team Workflow

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Building Overview

Configuration of Spaces

Owner Occupancy: 2-27, Podium 29-50

TEAM II: BONFANTI | CLARKE | COX | WIACEK

The New York Times

Forest City Ratner Companies

Team Workflow

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Building Overview

Configuration of Spaces

wner Occupancy:		
2-27, Podium	The N	
29-50	Forest	
27, 51	Jointly	

TEAM II: BONFANTI | CLARKE | COX | WIACEK

New York Times

t City Ratner Companies

y-owned MEP spaces

Team Workflow

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Building Overview

Configuration of Spaces

Owner Occupancy:		
2-27, Podium	The N	
29-50	Forest	
27, 51	Jointly Jointly	

TEAM II: BONFANTI | CLARKE | COX | WIACEK

New York Times

t City Ratner Companies

y-owned MEP spaces y-owned Cogeneration plant

Team Workflow

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Team Workflow

TEAM II: BONFANTI | CLARKE | COX | WIACEK

18

Team Workflow

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Team Workflow

TEAM II: BONFANTI | CLARKE | COX | WIACEK

19

Team Workflow

Phase I :FaçadePhase II:CogenerationPhase III:Lateral SystemPhase IV:Distribution Systems
and Coordination

Results and Conclusions

Team Workflow

Structural

Construction

Phase IV: Distribution Systems/ Coordination

Mechanical

Lighting/ Electrical

Team Workflow

Phase I :FaçadePhase II:CogenerationPhase III:Lateral SystemPhase IV:Distribution Systems
and Coordination

Results and Conclusions

Phase I: Façade

Phase II: Cogeneration

Phase III: Lateral System

Phase IV: Distribution and Coordination

Team Workflow

21

Team Workflow

Phase I :FaçadePhase II:CogenerationPhase III:Lateral SystemPhase IV:Distribution Systems
and Coordination

Results and Conclusions

Phase I: Façade

Phase II: Cogeneration

Phase III: Lateral System

Phase IV: Distribution and Coordination

Team Workflow

Similar to fast-tracked design build with bid packages

Team Workflow

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Phase I: Façade

Phase II: Cogeneration

Phase III: Lateral System

Phase IV: Distribution and Coordination

Team Workflow

Similar to fast-tracked design build with bid packages

Allows for leadership roles to evolve naturally

Team Workflow

Phase I :FaçadePhase II:CogenerationPhase III:Lateral SystemPhase IV:Distribution Systems
and Coordination

Results and Conclusions

Phase I: Façade

Phase II: Cogeneration

Phase III: Lateral System

Phase IV: Distribution and Coordination

Team Workflow

24

Phase I:

Facade

Team Workflow

Phase I: Façade Typical Floor Daylighting Analysis Energy Analysis Assembly and Cost Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Key Aspects:

- Open office 45 fc ave. + Task Lighting
- Private office 35 fc ave. + Task Lighting
- Circulation areas 30 fc ave.
- Brighter Interior Wall

4.14.2010

-Reducing contrast of a bright perimeter during the day

- 10' spacing leaving room for:
 - Fire protection Mechanical equipment
 - Lighting control equipment
- View out provided by façade redesign

Team Workflow

Phase I: Façade Typical Floor Daylighting Analysis Energy Analysis Assembly and Cost Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

4.14.2010

Typical Floor

Key Aspects:

- Open office lighting
- Brighter interior wall
- 10' spacing
- Private office lighting
- View out

TEAM II: BONFANTI | CLARKE | COX | WIACEK

27

Team Workflow

Phase I : Façade Typical Floor Daylighting Analysis Energy Analysis Assembly and Cost Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

4.14.2010

Daylight Analysis

Team Workflow

Phase I: Façade **Typical Floor** Daylighting Analysis Energy Analysis Assembly and Cost Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

4.14.2010

Redesign - Blades

Existing - Rods

Team Workflow

Phase I: Façade Typical Floor Daylighting Analysis Energy Analysis Assembly and Cost Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Redesign - Blades

Team Workflow

Phase I: Façade **Typical Floor** Daylighting Analysis Energy Analysis Assembly and Cost Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

4.14.2010

Looking For: Direct sunlight penetration

Redesign - Blades

Existing - Rods

February 22nd Noon

Redesign - Blades

Existing - Rods

March 22nd Noon

Redesign - Blades

Existing - Rods

April 22nd Noon

Redesign - Blades

Existing - Rods

May 22nd Noon

Redesign - Blades

Existing - Rods

June 22nd Noon

Redesign - Blades

Existing - Rods

July 22nd Noon 2000

Redesign - Blades

Existing - Rods

August 22nd Noon

Redesign - Blades

Existing - Rods

September 22nd Noon

Redesign - Blades

Existing - Rods

October 22nd Noon

Redesign - Blades

Existing - Rods

November 22nd Noon

Redesign - Blades

Existing - Rods

December 22nd Noon

Redesign - Blades

Existing - Rods

Team Workflow

Phase I : Façade Typical Floor Daylighting Analysis Energy Analysis Assembly and Cost Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

4.14.2010

Summer Solstice

Both performed similar and will not be presented

Team Workflow

Phase I: Façade **Typical Floor** Daylighting Analysis Energy Analysis Assembly and Cost Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

4.14.2010

Winter Solstice 10am

Winter Solstice 11am

Winter Solstice 12pm

Winter Solstice 1pm

Winter Solstice 2pm

Winter Solstice 3pm

Winter Solstice 4pm

Team Workflow

Phase I : Façade Typical Floor Daylighting Analysis Energy Analysis Assembly and Cost Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

4.14.2010

Equinox 9am

Equinox 10am

Equinox 11am

Equinox 12pm

Equinox 1pm

Equinox 3pm

Equinox 4pm

Team Workflow

Phase I: Façade **Typical Floor** Daylighting Analysis Energy Analysis Assembly and Cost Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Redesign - Blades

Existing - Rods

Team Workflow

Phase I: Façade **Typical Floor** Daylighting Analysis Energy Analysis Assembly and Cost Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

4.14.2010

Team Workflow

Phase I: Façade **Typical Floor** Daylighting Analysis Energy Analysis Assembly and Cost Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Sun View

Team Workflow

Phase I: Façade **Typical Floor** Daylighting Analysis Energy Analysis Assembly and Cost Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Pedestrian View

Team Workflow

Phase I: Façade Typical Floor Daylighting Analysis Energy Analysis Assembly and Cost Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Manufacturer: Oldcastle Glass

Double-paned insulated glazing unit

Visual light transmittance: 74%

Overall U-value: 0.280 [Btu/ft²⁻ F]

Shading coefficient: 0.73

Redesigned Glazing

Existing Glazing

Manufacturer: Saint-Gobain Glass Double-paned insulated glazing unit Visual light transmittance: 96% Overall U-value: 0.625 [Btu/ft2- F] Shading coefficient: 0.46

72

Team Workflow

Phase I : Façade Typical Floor Daylighting Analysis Energy Analysis Assembly and Cost Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

4.14.2010

Spandrel Properties

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Existing Spandrel

- Cavity wall system
- Overall U-value: 0.087 [Btu/ft2- F]
- Condensation: 37 [grains H₂O/ft²-day]
- 1. 3/16" aluminum panel
- 2. 1/2" air space
- 3. Vapor barrier
- 4. 2-1/2" rigid insulation

Team Workflow

Phase I: Façade Typical Floor Daylighting Analysis Energy Analysis Assembly and Cost Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Spandrel Properties

Redesigned Spandrel

Barrier wall system Overall U-value: 0.067 [Btu/ft2- F] Condensation: <2 [grains H₂O/ft²-day]

- 1. 22 gauge aluminum panel
- 2. 3-1/2" rigid insulation
- 3. Vapor barrier

Existing Spandrel

- Cavity wall system
- Overall U-value: 0.087 [Btu/ft2- F]
- Condensation: 37 [grains H₂O/ft²-day]
- 1. 3/16" aluminum panel
- 2. 1/2" air space
- 3. Vapor barrier
- 4. 2-1/2" rigid insulation

Team Workflow

Phase I: Façade Typical Floor Daylighting Analysis Energy Analysis Assembly and Cost Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

4.14.2010

Wall Sections

Existing Wall

UFAD system requires large plenum Lighting cove for improved daylighting Floor-to-ceiling height: 9'-7"

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Team Workflow

Phase I: Façade **Typical Floor** Daylighting Analysis Energy Analysis Assembly and Cost Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Redesigned Wall

Lower raised floor

Interstitial height decrease

Wall Sections

Existing Wall

UFAD system requires large plenum Lighting cove for improved daylighting

Floor-to-ceiling height: 9'-7"

Team Workflow

Phase I: Façade Typical Floor Daylighting Analysis Energy Analysis Assembly and Cost Phase II: Cogeneration Phase III: Lateral System **Phase IV:** Distribution Systems and Coordination

Results and Conclusions

Façade Energy Analysis

Façade redesign reduced envelope loads due to:

- More effective shading scheme
- Improved U-value of glazing and spandrel
- Enhanced glazing transmittance and shading coefficient

Peak load reduction for typical floor:

· Cooling: 35%

· Heating: 21%

Existing

- Cooling [Btu/hr-ft²] 39.7
- Heating [Btu/hr-ft²] 51.9

Redesign

25.7

30.6

Team Workflow

Phase I: Façade **Typical Floor** Daylighting Analysis Energy Analysis Assembly and Cost

Phase II: Cogeneration

- Phase III: Lateral System
- Phase IV: Distribution Systems and Coordination

Results and Conclusions

Monthly Energy Requirements

Team	Workflow

Phase I: Façade

Typical Floor Daylighting Analysis Energy Analysis

Assembly and Cost

Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Façade support system

- Existing shading system estimated at 25 psf
 - Includes ice on rods
 - New system weighs ~ 18 psf
- C-shaped members allow unitized connection
 - Bolted in 2 places per panel
 - . Same support used for new system
- Thermal expansion calculated
 - 120°F temperature differential
 - . ¹/₄" expansion per panel
- Mullions and structural glazing redesigned

Team Workflow

Phase I: Façade

Typical Floor Daylighting Analysis Energy Analysis

Assembly and Cost

Phase II:CogenerationPhase III:Lateral SystemPhase IV:Distribution Systems
and Coordination

Results and Conclusions

Double width façade panel was investigated for schedule savings

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Team Workflow

Phase I: Façade

Typical Floor Daylighting Analysis Energy Analysis

Assembly and Cost

Phase II:CogenerationPhase III:Lateral SystemPhase IV:Distribution Systems
and Coordination

Results and Conclusions

Double width façade panel was investigated for schedule savings

Not possible due to material hoist limitations

Additional information available in report

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Team Workflow

Phase I: Façade

Typical Floor Daylighting Analysis Energy Analysis

Assembly and Cost

Phase II:CogenerationPhase III:Lateral SystemPhase IV:Distribution Systems
and Coordination

Results and Conclusions

Typical Tower Floor

Entire Building

Cost of Existing Façade System

Façade Area	Average Façade Unit Cost	Rods	Rod Unit Cost	Total Cost
(SF)	(\$/ SF)	(ea.)	(\$/ rod)	(\$)
10,678	\$144	14510	\$20	\$1,606,290.00
555,236	\$144	754,510	\$20	\$83,527,200.00

Team Workflow

Phase I: Façade

Typical Floor Daylighting Analysis Energy Analysis

Assembly and Cost

Phase II:CogenerationPhase III:Lateral SystemPhase IV:Distribution Systems
and Coordination

Results and Conclusions

Typical Tower Floor

Entire Building

Cost of Existing Façade System

Façade Area	Average Façade Unit Cost	Rods	Rod Unit Cost	Total Cost
(SF)	(\$/ SF)	(ea.)	(\$/ rod)	(\$)
10,678	\$144	14510	\$20	\$1,606,290.00
555,236	\$144	754,510	\$20	\$83,527,200.00

Team Workflow

Phase I: Façade

Typical Floor Daylighting Analysis Energy Analysis

Assembly and Cost

Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Typical Tower Floor

Entire Building

Façade Area	Average Façade Unit Cost	Rods	Rod Unit Cost	Total Cost		Material
(SF)	(\$/ SF)	(ea.)	(\$/ rod)	(\$)		(\$)
10,678	\$144	14510	\$20	\$1,606,290.00	Typical Tower Floor	\$810,414
555,236	\$144	754,510	\$20	\$83,527,200.00	Entire Building	\$45,383,218

Cost of Redesigned Façade System

Labor	Total Cost
(\$)	(\$)
\$1,343,285	\$2,153,700
\$75,223,990	\$120,607,208

Team Workflow

Phase I: Façade Phase II: Cogeneration Plant Studies System Operation Interdisciplinary Coordination Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Phase II:

Cogeneration

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Building Overview Team Workflow Phase I: Façade Phase II: Cogeneration **Plant Studies** System Operation Interdisciplinary Coordination Phase III: Lateral System **Phase IV:** Distribution Systems and Coordination

Results and Conclusions

30.0 25.0 20.0 15.0 10.0 5.0 0.0

Price of Energy

Electric and natural gas prices obtained from the EIA for 2007

Steam prices are difficult to compare because they are set by each utility

· Price of steam for large commercial customer in New York City:

• 18.36 [\$/1,000 lbs] - ConEd

Team Workflow

Phase I: Façade Phase II: Cogeneration Plant Studies

System Operation Interdisciplinary Coordination Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Plant Equipment Sizing Methodology

Seasonal Building Cooling Load

Hour --- Winter --- · Fall/Spring ---- Summer

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Team Workflow

Phase I: Façade Phase II: Cogeneration Plant Studies

System Operation Interdisciplinary Coordination Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Plant Equipment Sizing Methodology

--- Winter --- Fall/Spring ---- Summer

--- Winter ---- Summer ---- · Fall/Spring

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Seasonal Building Heating Load

Team Workflow

Phase I: Façade Phase II: Cogeneration Plant Studies

System Operation Interdisciplinary Coordination Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

		Alternative 1	Alternative 2	Alternative 3	Alternative 4	Alternative 5	
		Electric	Absorption	Absorption	Absorption	Absorption	
	Low range CV	Electric	(1-stage)	(2-stage)	(2-stage)	(2-stage)	
Chiller Plant	Mid range VED	Electric	Absorption	Absorption	Steam Comp.	Electric	
		LIECTIC	(1-stage)	(2-stage)	(2-stage)	LIECTIC	
	High range VED	Electric	Electric	Electric	Steam Comp.	Electric	
	Thigh range vi D	LIECTIC	LIECTIC	LIECTIC	(2-stage)		
	Low range	IC Engine	Gas Turbine	Gas Turbine	Gas Turbine	IC Engine	
	Low range	(VFD)	(CV)	(CV)	(CV)	(VFD)	
rime Movers Mid range	Gas Turbine	Steam	IC Engine	Gas Turbine	Gas Turbine		
	inici range	(CV)	Generator	(VFD)	(CV)	(CV)	
	High range	IC Engine		Steam Gen.	Steam Gen.	IC Engine	
	ingii iange	(VFD)	((()))	(VFD)	(VFD)	(VFD)	
Annual Operati	ng Costs [\$/yr]	10,133,170	8,155,927	7,459,702	7,704,658	7,794,157	
Annual Prim	nary Energy	444 224	546 834	446 416	516 813	424 050	
[MMB	tu/yr]	<u></u> ₩₩₩,∠∠₩	540,054	440,410	510,015	424,000	

Preliminary Plant Study

Energy Modeling Assumptions TRACE model from Phase I was adapted for the entire building Used "average monthly hourly" TMY data for analysis **Electrical loads**

- Lighting: 1.1 [W/ft²]
- Plug loads: 0.5 [W/ft²]
- Misc. loads: 1.0 [W/ft²]
- Data center: 1,200,000 [W]

• Load profile was applied to all electrical loads (except data center) Modeled part-load plant operating characteristics by weighting COP and heat rate for each hourly time-step

Team Workflow

Phase I: Façade Phase II: Cogeneration Plant Studies

System Operation Interdisciplinary Coordination Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

		Alternative 1	Alternative 2	Alternative 3	Alternative 4	Alternative 5
	Low range CV	Electric	Absorption (1-stage)	Absorption (2-stage)	Absorption (2-stage)	Absorption (2-stage)
Chiller Plant	Mid range VFD	Electric	Absorption (1-stage)	Absorption (2-stage)	Steam Comp. (2-stage)	Electric
	High range VFD	Electric	Electric	Electric	Steam Comp. (2-stage)	Electric
	Low range	IC Engine (VFD)	Gas Turbine (CV)	Gas Turbine (CV)	Gas Turbine (CV)	IC Engine (VFD)
Prime Movers	Mid range	Gas Turbine (CV)	Steam	IC Engine (VFD)	Gas Turbine (CV)	Gas Turbine (CV)
	High range	IC Engine (VFD)	(VFD)	Steam Gen. (VFD)	Steam Gen. (VFD)	IC Engine (VFD)
Annual Operati	ng Costs [\$/yr]	10,133,170	8,155,927	7,459,702	7,704,658	7,794,157
Annual Prim [MMB	nary Energy tu/yr]	444,224	546,834	446,416	516,813	424,050

Preliminary Plant Study

Energy Modeling Assumptions TRACE model from Phase I was adapted for the entire building Used "average monthly hourly" TMY data for analysis **Electrical loads**

- Lighting: 1.1 [W/ft²]
- Plug loads: 0.5 [W/ft²]
- Misc. loads: 1.0 [W/ft²]
- Data center: 1,200,000 [W]

• Load profile was applied to all electrical loads (except data center) Modeled part-load plant operating characteristics by weighting COP and heat rate for each hourly time-step

Building Overview	
	Chiller Pla
Team Workflow	(1) – 1,058 [tor
Dhacal: Eacada	Trane A
Phase II: Cogonoration	· COP: 1
Plant Studios	Steam f
System Operation	(1) – 1,300 [tor
Interdisciplinary Coordination	· Trane C
Phase III: Lateral System	· COP: ~
Phase IV: Distribution Systems	(1) – 2,170 [tor
and Coordination	· Trane C
	• COP: ~
Results and Conclusions	. (1) chille

ant

- n] double-stage absorption chiller
- BTF-1050
- 1.21
- fired
- n] two-stage, single compressor electric chiller
- CVHF-1300
- 6.1
- on] dual compressor electrical chillers
- DHF-2170
- 6.1
- er for stand-by

Building Overview	
	Chiller Pla
Team Workflow	(1) – 1,058 [tor
Dhacal: Eacada	Trane A
Phase II: Cogonoration	· COP: 1
Plant Studios	Steam f
System Operation	(1) – 1,300 [tor
Interdisciplinary Coordination	· Trane C
Phase III: Lateral System	· COP: ~
Phase IV: Distribution Systems	(1) – 2,170 [tor
and Coordination	· Trane C
	• COP: ~
Results and Conclusions	. (1) chille

Final Equipment Selection

- n] double-stage absorption chiller
- BTF-1050
- ired
- n] two-stage, single compressor electric chiller
- VHF-1300
- 6.1
- n] dual compressor electrical chillers
- DHF-2170
- 6.1
- er for stand-by

CHP Plant

- (1) 1,185 [kW] gas turbine
 - Solar Saturn 20
 - · Heat rate: 13,906 [Btu/kWh]
 - Recoverable heat rate: 8,975 [Btu/kWh]
 - Electrical efficiency: 25%
- (2) 1,040 [kW] internal combustion engines
 - · Caterpillar G3516
 - · Heat rate: 10,593 [Btu/kWh]
 - Recoverable heat rate: 5,234 [Btu/kWh]
 - Electrical efficiency: 32%

Team Workflow

Phase I: Façade Phase II: Cogeneration **Plant Studies** System Operation Interdisciplinary Coordination Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Flow Diagrams

Team Workflow

Phase I: Façade Phase II: Cogeneration **Plant Studies** System Operation Interdisciplinary Coordination Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Flow Diagrams

PODIUM CELLAR

Mechanical Systems Performance

Primary energy use reduction from existing building: 19%

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Mechanical Systems Performance

[lbs CO ₂ /yr]	67,562,895
[lbs NOx/yr]	497,038
[lbs SOx/yr]	285,510

135,807 333,528 292,978 210,681

Normal Operating Costs

Natural Gas Purchased

Steam Purchased

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Normal Operating Costs

Normal Operating Costs

Normal Operating Costs

Winter Energy Cost: (Dec-Feb)

Normal Operating Costs

CHP Redesign: \$8,773,200 / year

Energy cost reduction from existing building: 20%

Building Overview 8,000 7,000 Team Workflow 6,000 -5,000 -4,000 -Phase I: Façade Phase II: Cogeneration **Electric** 3,000 Plant Studies System Operation 1,000 Interdisciplinary Coordination Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Electric Load Control

Peak Load Shedding Strategy

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Team Workflow

Phase I: Façade Phase II: Cogeneration **Plant Studies** System Operation Interdisciplinary Coordination Phase III: Lateral System **Phase IV:** Distribution Systems and Coordination

Results and Conclusions

Electric Load Control

Electrical load shedding strategy

Building's peak electrical demand: 7,394 [kW] Installed generation capacity: 3,265 [kW] Recommended strategy: Peak purchase cap

TEAM II: BONFANTI | CLARKE | COX | WIACEK

- Guarantees no more that 4,129 [kW] be purchased from the utility

Team Workflow

Phase I: Façade Phase II: Cogeneration **Plant Studies** System Operation Interdisciplinary Coordination Phase III: Lateral System **Phase IV:** Distribution Systems and Coordination

Results and Conclusions

Electric Load Control

Electrical load shedding strategy

Building's peak electrical demand: 7,394 [kW] Installed generation capacity: 3,265 [kW] Recommended strategy: Peak purchase cap

TEAM II: BONFANTI | CLARKE | COX | WIACEK

- Guarantees no more that 4,129 [kW] be purchased from the utility

Team Workflow

Phase I: Façade Phase II: Cogeneration Plant Studies System Operation Interdisciplinary Coordination Phase III: Lateral System **Phase IV:** Distribution Systems and Coordination

Results and Conclusions

Electric Load Control

Electrical load shedding strategy

Building's peak electrical demand: 7,394 [kW] Installed generation capacity: 3,265 [kW] Recommended strategy: Peak purchase cap

"Critical Peak Rebate Program"

NYT Building has lean burning generators which may act as localized emergency back-up for the utility

ConEd agrees to pay 1.50 [\$/kW] in the case when the CHP plant has extra generating capacity and load relief is needed

- Guarantees no more that 4,129 [kW] be purchased from the utility

Team Workflow

Phase I: Façade Phase II: Cogeneration **Plant Studies** System Operation Interdisciplinary Coordination Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

vibration effects

framing

Podium framing

- Larger area containing mechanical equipment
- Located as far away from the tower as possible to prevent
- RAM Structural System used to analyze and redesign
 - . Existing W21x44 beam members not sufficient
 - Increased to W24x62

Building	Overview

Team	\Morkflow
ICUIII	

Phase I: Façade Phase II: Cogeneration Plant Studies System Operation Interdisciplinary Coordination Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Iten

Absorption Chiller

Electric Chiller (Sing

Electric Chiller (Du

Internal Combustion

Gas Turbine Engine

Crane Selection

ı	Shipping Weight (Ib)	Elevation (ft)	Horizontal Distance from Crane (ft)
	59,800	-16	40
le Compressor)	37,701	-16	40
al Compressor)	78,890	-16	40
Engine	20,560	80	180
	23,215	80	180

Taam	Markflow
ream	VVOIKIIOW

Phase I : Façade Phase II: Cogeneration Plant Studies System Operation Interdisciplinary Coordination Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Iten

Absorption Chiller

Electric Chiller (Sing

Electric Chiller (Du

Internal Combustion

Gas Turbine Engin

Crane Selection

	Shipping Weight (Ib)	Elevation (ft)	Horizontal Distance from Crane (ft)
	59,800	-16	40
le Compressor)	37,701	-16	40
al Compressor)	78,890	-16	40
Engine	20,560	80	180
ne	23,215	80	180

440 ton Manitowoc 16000 crawler crane selected for controlling lift (by weight)

No increase to general conditions cost

Full data available in report

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Team Workflow

Phase I : Façade Phase II: Cogeneration Plant Studies System Operation Interdisciplinary Coordination Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

CHP Baseline CHP Redesign

Difference

CHP Cost Comparison

Equipment Cost (\$)	Labor Cost (\$)	Annual Operating Cost (\$)
\$3,673,500.00	\$114,750.00	\$10,983,700.00
\$6,708,800.00	\$255,000.00	\$8,773,200.00
(\$3,035,300.00)	(\$140,250.00)	\$2,210,500.00

Annual Savings \$2,210,500.00

Payback of Redesign 3.15 Years

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Team Workflow

Phase I : Façade Phase II: Cogeneration Plant Studies System Operation Interdisciplinary Coordination Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

CHP Baseline CHP Redesign

Difference

CHP Cost Comparison

Equipment Cost (\$)	Labor Cost (\$)	Annual Operating Cost (\$)
\$3,673,500.00	\$114,750.00	\$10,983,700.00
\$6,708,800.00	\$255,000.00	\$8,773,200.00
(\$3,035,300.00)	(\$140,250.00)	\$2,210,500.00

Annual Savings \$2,210,500.00

Payback of Redesign 3.15 Years

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Building Overview	Interest	Initial Annual
Team Workflow	Rate	PMT
	0.015	(\$50,242,255.52)
Phase I: Façade	0.02	(\$53,320,476.39)
Phase II: Cogeneration	0.025	(\$56,501,233.81)
Plant Studies	0.03	(\$59,782,413.75)
System Operation	0.035	(\$63,161,670.86)
Interdisciplinary Coordination	0.04	(\$66,636,453.26)
Phase III: Lateral System	0.045	(\$70,204,028.19)
Phase IV: Distribution Systems and Coordination	0.05	(\$73,861,508.05)

Results and Conclusions

Loan Repayment Analysis

FV of Loan at End Repayment Period	Annual Savings Applied to Payments	Potential PV w/ savings applied to payment	Potential NP w/ savin applied to paymen
(\$1,256,056,387.88)	(\$2,210,500.00)	\$1,086,800,700.55	23.74
(\$1,333,011,909.81)	(\$2,210,500.00)	\$1,084,156,600.53	23.73
(\$1,412,530,845.22)	(\$2,210,500.00)	\$1,081,727,084.08	23.72
(\$1,494,560,343.79)	(\$2,210,500.00)	\$1,079,491,762.97	23.71
(\$1,579,041,771.57)	(\$2,210,500.00)	\$1,077,432,388.01	23.69
(\$1,665,911,331.52)	(\$2,210,500.00)	\$1,075,532,607.72	23.67
(\$1,755,100,704.71)	(\$2,210,500.00)	\$1,073,777,755.91	23.65
(\$1,846,537,701.21)	(\$2,210,500.00)	\$1,072,154,664.46	23.63

Given: \$1.041 Billion initial loan (including redesign)

Assumed 25 year initial payback period

Building	Overview
	0 1 0 1 1 0 1 1

Team Workflow

Phase I : Façade Phase II: Cogeneration Plant Studies System Operation Interdisciplinary Coordination Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Interes t Rate	Initial Annual PM
0.015	(\$50,242,255.52)
0.02	(\$53,320,476.39)
0.025	(\$56,501,233.81)
0.03	(\$59,782,413.75)
0.03	(\$59,782,413.75) (\$63,161,670.86)
0.03 0.035 0.04	(\$59,782,413.75) (\$63,161,670.86) (\$66,636,453.26)
0.03 0.035 0.04 0.045	(\$59,782,413.75) (\$63,161,670.86) (\$66,636,453.26) (\$70,204,028.19)

Loan Repayment Analysis

FV of Loan at End Repayment Period	Annual Savings Applied to Payments	Potential PV w/ savings applied to payment	Potential NP w/ savings applied to payment
(\$1,256,056,387.88)	(\$2,210,500.00)	\$1,086,800,700.55	23.74
(\$1,333,011,909.81)	(\$2,210,500.00)	\$1,084,156,600.53	23.73
(\$1,412,530,845.22)	(\$2,210,500.00)	\$1,081,727,084.08	23.72
(\$1,494,560,343.79)	(\$2,210,500.00)	\$1,079,491,762.97	23.71
(\$1,579,041,771.57)	(\$2,210,500.00)	\$1,077,432,388.01	23.69
(\$1,665,911,331.52)	(\$2,210,500.00)	\$1,075,532,607.72	23.67
(\$1,755,100,704.71)	(\$2,210,500.00)	\$1,073,777,755.91	23.65
(\$1,846,537,701.21)	(\$2,210,500.00)	\$1,072,154,664.46	23.63

 Given: \$1.041 Billion initial loan (including redesign) Assumed 25 year initial payback period
With monthly utility savings applied to loan payments:
Owner can borrow an <u>additional \$38 Million</u> Owner can pay back loan <u>1.3 years faster</u>

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Phase I :FaçadePhase II:CogenerationPhase III:Lateral SystemPhase IV:Distribution Systems
and Coordination

Results and Conclusions

4.14.2010

Phase III :

Lateral Systems

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Steel eccentric and concentric chevron braced frames

Exterior X-braces: pre-stressed rods

Outrigger level at 28th and 51st floors

Structural Overview: Lateral system

below 28th floor

above 28th floor

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Preliminary Study Redesign Mechanical Relocation Progressive Collapse Phase IV: Distribution Systems and Coordination

Results and Conclusions

. Drift: H/450

Goals for Redesign

- Create a penthouse level by removing the outrigger at the 51st level
 - Bring in revenue with new space
- Eliminate exterior X-braces for efficiency
- Take advantage of extra structural depth with moment frames
- Meet original design criteria

 - Periods of vibration: 6.25 seconds 6.75 seconds

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Preliminary Study Redesign Mechanical Relocation Progressive Collapse Phase IV: Distribution Systems and Coordination

Results and Conclusions

Option 1

Not considered further

Lateral system

- Moment frames in both the N-S and E-W directions provide stiffness in lieu of 51st outrigger
- Concentric steel braces replace eccentric braces
- System is heavier due to amount of moment frames/added steel
- N-S moment frames skewed along grid C

	Option 2
Phasel: Façade	Moment frame
Phase II: Cogeneration	. Bracing
Phase III: Lateral System Preliminary Study	E-W is much s
Redesign	Look into addir
Mechanical Relocation	Can eliminate
Progressive Collapse Phase IV: Distribution Systems	Not considered
and Coordination	

Results and Conclusions

- es only in the E-W direction
- members lighter due to contributing stiffness
- tiffer than N-S
- ng stiffness in N-S direction
- some E-W members
- d further

	Option 3
Phasel: Façade	Moment frame
Phase II: Cogeneration	Symmetry in b
Phase III: Lateral System	E-W lin
Preliminary Study	
Redesign	· N-5 IINE
Mechanical Relocation	
Progressive Collapse	Members in th
Phase IV: Distribution Systems	System chose
and Coordination	

Results and Conclusions

- es only in the E-W direction
- ooth directions
- e of bracing removed
- e of bracing added
- ne N-S direction able to be lighter
- en for further analysis

below 28th floor

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Preliminary Study Redesign Mechanical Relocation Progressive Collapse Phase IV: Distribution Systems and Coordination

Results and Conclusions

Cases 1-4 were considered

Lateral system

- Used wind tunnel base shear
- Approximately 2/3 that determined via ASCE 7-05

 - . Symmetrical system eliminates inherent torsion
 - . Case 1 controlled the design
- Bracing sizes based on strength calculated in Excel spreadsheet

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Preliminary Study Redesign Mechanical Relocation Progressive Collapse Phase IV: Distribution Systems and Coordination

Results and Conclusions

P-delta effects

Sizes grouped

Lateral system

- Modeled in 3D in ETABS using rigid and semi-rigid diaphragms
- Dynamic analysis for periods of vibration
- User-defined members built-up and box columns
- Shear and axial deformations
- Panel zones explicitly modeled

The New York Times

Building Overview

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Preliminary Study Redesign Mechanical Relocation Progressive Collapse Phase IV: Distribution Systems and Coordination

Results and Conclusions

system

Lateral system

Concentric braces used throughout due to newly ducted mechanical

- Bracing sizes increased to meet drift and period requirements
- Original system: W14x68 to W14x455
- New system: W14x53 to W14x176 (with additional N-S bracing line)

	BRACING SIZES								
	N/S Brace Existing		E/W Brace	Existing	N/S Prop	N/S Brace Proposed		Brace posd	
			Single		Short				
Level	Chevron Brace	Ecc. Brace	Diag.	Long Chevron	Chevron	Section	Weight	Section	Weight
Roof	W14x159	W14x193	W14x159	W14x82	W14x68	W14	68	W14	53
52	W14x159	W14x193	W14x159	W14x82	W14x68	W14	68	W14	53
51	W14x159	W14x193	W14x159	W14x82	W14x68	W14	68	W14	53
50	W14x159	W14x193	W14x159	W14x82	W14x68	W14	68	W14	53
49	W14x257	W14x159	W14x398	W14x90	W14x68	W14	82	W14	61
48	W14x257	W14x159	W14x398	W14x90	W14x68	W14	82	W14	61
12	W14x283	W14x90	W14x283	W14x120	W14x90	W14	145	W14	159
11	W14x283	W14x90	W14x283	W14x120	W14x90	W14	145	W14	159
10	W14x283	W14x90	W14x283	W14x120	W14x90	W14	145	W14	159
9	W14x283	W14x90	W14x283	W14x120	W14x90	W14	145	W14	159
8	W14x283	W14x90	W14x283	W14x120	W14x90	W14	145	W14	159
7	W14x283	W14x159	W14x311	W14x132	W14x109	W14	159	W14	176
6	W14x283	W14x159	W14x311	W14x132	W14x109	W14	159	W14	176
5	W14x283	W14x159	W14x311	W14x132	W14x109	W14	159	W14	176
4	W14x283	W14x159	W14x311	W14x132	W14x109	W14	159	W14	176
3	W14x283	W14x159	W14x311	W14x132	W14x109	W14	159	W14	176
2	W14x283	W14x159	W14x311	W14x132	W14x109	W14	159	W14	176

	5.5% Siluciula
Phase I: Façade	. 21.9 psf
Phase II: Cogeneration	. 21.1 psf
Phase III: Lateral System	Periods of vibra
Preliminary Study	- 6.7 sec
Redesign	. 6.3 sec
Mechanical Relocation	Drift limit of 19
Progressive Collapse	E-W drif
Phase IV: Distribution Systems	
and Coordination	• N-3 dhi

Results and Conclusions

Lateral system

- 3.5% structural weight savings
 - f existing
 - f new
 - ation
 - onds in E-W
 - onds in N-S
 - 9.9" (H/450)
 - ft: 17.9"
 - t: 13.4"

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Preliminary Study Redesign Mechanical Relocation Progressive Collapse Phase IV: Distribution Systems and Coordination

Results and Conclusions

Thermal movement study

- Outriggers controlled differential movement
- Causes floor racking and partition separation
- $\Delta_{28} = 6.45 \times 10^{-6}$ in/in- F * (12in * 357.5') * 120 F = 3.32 inches
- Allowable floor deflection L/180= 2.66"
- Thermal movement of exterior exposed columns is an issue

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Preliminary Study Redesign Mechanical Relocation Progressive Collapse Phase IV: Distribution Systems and Coordination

Results and Conclusions

Two options found

Lateral system

- · Belt truss or outrigger
- Heat/cool columns
- Controlling the temperature would likely increase costs
- "Thermal" truss relocated to roof
- Lateral system could be revisited utilizing truss for additional stiffness
 - Bracing members could be optimized further

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Preliminary Study Redesign Mechanical Relocation Progressive Collapse Phase IV: Distribution Systems and Coordination

Results and Conclusions

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Preliminary Study Redesign Mechanical Relocation Progressive Collapse Phase IV: Distribution Systems and Coordination

Results and Conclusions

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Preliminary Study Redesign Mechanical Relocation Progressive Collapse Phase IV: Distribution Systems and Coordination

Results and Conclusions

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Preliminary Study Redesign Mechanical Relocation Progressive Collapse Phase IV: Distribution Systems and Coordination

Results and Conclusions

Phase I: Façade	Considers redis
Phase II: Cogeneration	Modeled and a
Phase III: Lateral System	Calculated DCF
Preliminary Study	. All mem
Redesign	
Mechanical Relocation	Nonlinear-stat
Progressive Collapse	Virtual work use
Phase IV: Distribution Systems	. All mem
and Coordination	Should be mod
	. Consider
Results and Conclusions	

Linear-static method: GSA

- istribution within frame of LC 2(1.0D + 0.25L)
- analyzed as a 2D frame in ETABS
- R based on plastic moments
- bers failed: potential for progressive collapse

tic method: GSA

- sed for analysis: does not consider redistribution
- nbers failed: potential for progressive collapse
- deled as a 3D frame in ETABS as DoD requires
- ers redistribution of loads to other frames and bays

SSIVE COLLAPSE LINEAR STATIC ANALYSIS										
allowable	e shear (k)		<u>a</u>	llowable i	moment (k)		required section			
check	2, B&C	check	2, A&B	check	2, B&C	check	2, A&B	section	2, B&C	section
DCR<2	W16x36	DCR<2	W18x50	DCR<3	W16x36	DCR<3	ФМр		ФМр	
ОК	140	ОК	379	NG!!	240	NG!!	1270	W30x108	1075	W30x99
OK	140	OK	379	NG!!	240	NG!!	1262	W30x108	1078	W30x99
OK	140	OK	379	NG!!	240	NG!!	1255	W30x108	1082	W30x99
ОК	140	OK	379	NG!!	240	NG!!	1248	W30x108	1084	W30x99
OK	140	OK	379	NG!!	240	NG!!	1241	W30x108	1084	W30x99
OK	140	OK	379	NG!!	240	NG!!	1236	W30x108	1085	W30x99
OK	140	OK	379	NG!!	240	NG!!	1231	W30x108	1083	W30x99
OK	140	OK	379	NG!!	240	NG!!	1226	W30x108	1084	W30x99
OK	140	OK	379	NG!!	240	NG!!	1217	W30x108	1083	W30x99

Values for Linear Procedures					
	DCR				
	3				
	2				
olation b	etween the values on lines a and b	for both flange			

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Phase IV :

Distribution Systems and Coordination

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination Mechanical Electrical Coordination SIPS Sequencing

Results and Conclusions

Proposed Mechanical Distribution

Removal of UFAD

Issues with long-term indoor air quality

Thermal comfort problems due to localized under/over pressurization

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination Mechanical Electrical Coordination SIPS Sequencing

Results and Conclusions

30 x 132 beam clashing with a 24" x 80" duct (recreated in Navisworks)

Proposed Mechanical Distribution

Removal of UFAD

Issues with long-term indoor air quality

Thermal comfort problems due to localized under/over pressurization

Elimination of VAV

Proposal included a comparison between an all-air variable air volume system (VAV) and a dedicated outdoor air system with active chilled beams

New structural space requirements eliminated the feasibility of a VAV system

Selected a dedicated outdoor air system (DOAS) with active chilled beams (ACB)

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination Mechanical Electrical Coordination SIPS Sequencing

Results and Conclusions

System Selection

Perimeter Finned Tube Heating

Open plan chilled beams

Single room zone with chilled beams

Miscellaneous spaces with fan coil units

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination Mechanical Electrical Coordination SIPS Sequencing

Results and Conclusions

System Selection

Perimeter Finned Tube Heating Open plan chilled beams Single room zone with chilled beams Miscellaneous spaces with fan coil units

Active Chilled Beam

Design considerations

Easy to implement demand controlled ventilation Ventilation and heating/cooling loads are decoupled DOAS/ACB recommendations (Mumma et al):

- Space dewpoint: 45 F
- Supply air temperature: 55 F
- Discharge air temperature: 64-66 F
- 5:1 mixing ratio at terminal unit
- Chilled water supply temperature: 57-61 F

TROX 2-pipe active chilled beams as standard

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination Mechanical Electrical Coordination SIPS Sequencing

Results and Conclusions

System Operation

General operation

Outdoor air unit:

- · Removes all latent loads
- · Supply fan 55,000 [CFM]
- Steam humidifier to maintain space minimum 0.006 [lb H₂O/lb DA]

Floor-by-floor

- Supply fan 2,500 [CFM] (ASHRAE Std. 62.1 + 30%)
- Occupancy sensors in single-zone rooms allow for VAV box reset
- CO₂ sensor in return duct for each quadrant
- Relative humidity sensor in space for each quadrant

TEAM II: BONFANTI | CLARKE | COX | WIACEK

• Enthalpy wheel operates at around 64% effectiveness (unbalanced flow)

· Zone T-stat controls tempered chilled water in ACBs and perimeter finned tube

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination Mechanical Electrical Coordination SIPS Sequencing

Results and Conclusions

Ceiling Layout Coordination

Lighting and chilled beams

Selected linear devices

Oriented in the North-South direction

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination Mechanical Electrical Coordination SIPS Sequencing

Results and Conclusions

Material

Ductwork and Connection

Chilled Beams

VAV Box and Connection

Outdoor Air Units

Labor

Ductwork and Connectio Chilled Beams VAV Box and Connection

Outdoor Air Units

Mechanical Systems Cost

	Qty.		Unit Cost	Cost Per Floor	Cost for NYT Spaces
ns	11,400	lb	\$0.76	\$8,664.00	\$242,592.00
	161	EA	\$800.00	\$128,800.00	\$3,606,400.00
IS	44	EA	\$18.00	\$792.00	\$22,176.00
	2	EA	\$26,100.00	-	\$52,200.00

	Qty.	Unit	Unit Cost	Cost Per Floor	Cost for NYT Spaces
ns	11,400	lb	\$8.86	\$101,004.00	\$2,828,112.00
	161	EA	\$217.00	\$34,937.00	\$978,236.00
ns	44	EA	\$57.33	\$2,522.00	\$70,630.00
	2	EA	8778	-	\$17,556.00

Total: (\$276,719.00) (\$7,800,346.00)

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Building Overview	From DP to			Length + 5'per			3-1/2" - Conduit		
	Floor	Price	Length	termination (6)	Number	Total	Price	Length	Total
Phase I: Façade	4	\$19.99	175	205	4	\$16,421.79	\$28.06	175	\$4,921.02
Phase II: Cogeneration	7	\$19.99	217	247	4	\$19,750.12	\$28.06	217	\$6,089.02
Dhace III : Latoral System	10	\$19.99	259	289	4	\$23,078.46	\$28.06	259	\$7,257.02
riase III. Lateral System	13	\$19.99	300	330	4	\$26,406.79	\$28.06	300	\$8,425.02
Phase IV: Distribution Systems	16	\$19.99	342	372	4	\$29,735.13	\$28.06	342	\$9,593.01
and Coordination	19	\$19.99	384	414	4	\$33,063.46	\$28.06	384	\$10,761.01
Mechanical	22	\$19.99	425	455	4	\$36,391.80	\$28.06	425	\$11,929.01
	25	\$19.99	467	497	4	\$39,720.13	\$28.06	467	\$13,097.01
Electrical	28	\$19.99	508	538	4	\$43,048.47	\$28.06	508	\$14,265.00
Coordination				_	TOTALS:	\$267,616.13			\$86,337.11
SIPS Sequencing	Price per	side	\$353,953.24						
	Price Both	sides	\$707,906.48	3					

Results and Conclusions

Conductor to Bus Duct Comparison

500mcm - Copper Conductors - Existing Conditions

Building Overview	750mcm - Aluminum Conductors								
Building Overview	From DP to			Length + 5'per			3	-1/2" - (Conduit
	Floor	Price	Length	termination(6)	Number	Total	Price	Length	Total
Phase I: Façade	4	\$10.18	175	205	4	\$8,362.87	\$31.61	175	\$5,543.60
Phase II: Codeneration	7	\$10.18	217	247	4	\$10,057.84	\$31.61	217	\$6,859.37
Dhace III. Lataral Sustam	10	\$10.18	259	289	4	\$11,752.81	\$31.61	259	\$8,175.14
Phase III: Lateral System	13	\$10.18	300	330	4	\$13,447.78	\$31.61	300	\$9,490.90
Phase IV: Distribution Systems	16	\$10.18	342	372	4	\$15,142.75	\$31.61	342	\$10,806.67
and Coordination	19	\$10.18	384	414	4	\$16,837.72	\$31.61	384	\$12,122.44
Mechanical	22	\$10.18	425	455	4	\$18,532.69	\$31.61	425	\$13,438.20
	25	\$10.18	467	497	4	\$20,227.66	\$31.61	467	\$14,753.97
Electrical	28	\$10.18	508	538	4	\$21,922.63	\$31.61	508	\$16,069.73
Coordination					TOTALS:	\$136,284.75			\$97,260.02
SIPS Sequencing	Price pe	r side	\$233,544.77						
	Price Bot	h sides	\$467,089.54						

Results and Conclusions

Conductor to Bus Duct Comparison

Phase I: Façade	From DP to Floo
Phase II: Cogeneration	
Phase III: Lateral System	20
Phase IV: Distribution Systems	
and Coordination	
Mechanical	
Electrical	
Coordination	
SIPS Sequencing	

Results and Conclusions

2500A - Copper Bus Duct

	Price	Units	Length	Number	Total
Bus	\$980.79	LF	508	1	\$498,609.12
lbows / Up / Downs	\$4,054.37	EA	-	5	\$20,271.85
Taps	\$6,279.75	EA	-	28	\$175,833.00

Price per side	\$694,713.97
Price Both sides	\$1,389,427.93

Phase I: Façade	From DP to Floor
Phase II: Cogeneration	
Phase III: Lateral System	
Phase IV: Distribution Systems	
and Coordination	
Mechanical	
Electrical	
Coordination	
SIPS Sequencing	

Results and Conclusions

2500A - Aluminum Bus Duct

	Price	Units	Length	Number	Total
Bus	\$827.70	LF	508	1	\$420,781.99
Elbows / Up / Downs	\$4,081.72	EA	-	5	\$20,408.60
Taps	\$5 <i>,</i> 639.63	EA	-	28	\$157,909.64

Price per side	\$599,100.23
Price Both sides	\$1,198,200.46

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination Mechanical Electrical Coordination SIPS Sequencing

Results and Conclusions

Results:

•	Existing:	\$707,906.48
	Aluminum Alternate:	\$467,089.54
	Copper Bus:	\$1,389,427.93
	Aluminum Bus:	\$1,198,200.46

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination Mechanical Electrical Coordination SIPS Sequencing

Results and Conclusions

3D Coordination and Clash Detection

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination Mechanical Electrical Coordination SIPS Sequencing

Results and Conclusions

3D Coordination and Clash Detection

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination Mechanical Electrical Coordination SIPS Sequencing

Results and Conclusions

3D Coordination and Clash Detection

	Type:	Hard
	Tolerance (m):	0.00
	Link:	None
	Step (sec):	0.10
Start	Found:	0

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Zero clashes

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination Mechanical Electrical Coordination SIPS Sequencing

Results and Conclusions

SIPS Sequencing

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Phase I : Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination Mechanical Electrical Coordination SIPS Sequencing

Results and Conclusions

SIPS Sequencing

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination Mechanical Electrical Coordination SIPS Sequencing

Results and Conclusions

SIPS Sequencing

14/16/0		1129.00	W 10, 10	April 10	465.7	Aug 23, 19	A 0 27.76	DID S W	500 10, 106	360 17, 10	96025.04	Į.
UNI A	TEIU	HMHMMHHM	NUMBER	avan da	Matiwite di		STREET, SALE IN	ana ta mana ang		的复数动物机制造		÷
-						_						
100500	140											
	Install	Cable T										
		Rough UF C	atie	Ň								
	78	Install Electr	ical Floor Boxes									
				Terminate/ T	nti Dila	8						
						(WORLD WORLD WO	NUMBER OF STREET					
						Install Ploor	Contraction of the					
						Clean Und	edi (28)					
						instal	Fiooria 107					
							Com	hission .				
							1073-047634	123111 🛦 0.0				
							10,000,000					
								Owner	(1144	(
L									NUMBER OF	CHAN'S DECLY	WEY 🛦 18	Ż

Phase I : Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination Mechanical Electrical Coordination SIPS Sequencing

Results and Conclusions

SIPS Sequencing

Interior fit out of each floor divided into six regions of equal work

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination Mechanical Electrical Coordination SIPS Sequencing

Results and Conclusions

SIPS Sequencing

Interior fit out of each floor divided into six regions of equal work

Allowed for tighter stacking of trades

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination Mechanical Electrical Coordination SIPS Sequencing

Results and Conclusions

SIPS Sequencing

Interior fit out of each floor divided into six regions of equal work

Allowed for tighter stacking of trades

SIPS production method employed to reduce fit out time Trades move from one region to the next in succession

Phase I : Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination Mechanical Electrical Coordination SIPS Sequencing

Results and Conclusions

SIPS Sequencing

New schedule

Tuesday 8:00:00 AM 6/13/2006 Day=1 Week=1

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination Mechanical Electrical Coordination SIPS Sequencing

Results and Conclusions

SIPS Sequencing

New schedule

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination Mechanical Electrical Coordination SIPS Sequencing

Results and Conclusions

Relation to entire building construction?

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination Mechanical Electrical Coordination SIPS Sequencing

Results and Conclusions

SIPS – Redesign Sequencing

Friday 8:00:00 AM 4/21/2006 Day=1 Week=1

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Building Overview Team Workflow

Phase I: Façade Phase II: Cogeneration Phase III: Lateral System Phase IV: Distribution Systems and Coordination

Results and Conclusions

Conclusions

TEAM II: BONFANTI | CLARKE | COX | WIACEK

Phase I:

- Reduced number of fixtures by about 50%
- Dimming increased energy savings/decreased load
- Minimized direct solar glare
- Maintained building transparency
- Reduced the annual energy consumption by 23%

Phase III:

 Redesigned lateral system eliminates inherent torsion and reduces required steel by 3.5%
Elimination of 51st floor outrigger creates two additional rentable floors to bring in revenue
New York Times Building could be at risk for progressive collapse

Financial Summary:

Phase I: Façade Redesig

Existing Façade Redesigned Façade

Difference

Phase II: Cogeneration Plant Redesign

Existing CHP Plant Redesigned CHP Plan

Difference

Phase II:

- Allowed for a cap to be placed on purchased peak electrical demand
- Increased the installed electric generating capacity from 1400 kW to 3265 KW
- Reduced the annual building operating costs by 20% compared to the existing CHP system

Phase IV:

- Bus ducts not a cost effective option
- Replaced existing UFAD system
- Chose DOAS with ACBs because of reduced space requirements and superior thermal comfort
 Zero system clashes were found on the first
- clash detection analysis due to coordination process
- Achieved a 177 day schedule reduction for the interior fit out portion of the project

gn					
Material		Labor	Typical Floor Cost	Total	
	1/10/01/01		Lypical Proof Cost	Building Cost	
	\$810,414	\$45,383,218	\$1,606,293	\$83,527,260	
	\$1,343,285	\$75,223,990	\$2,153,700	\$120,607,208	
	-\$532,871	-\$29,840,772	-\$547,407	-\$37,079,948	
n					
	Fauinment Cost	Lahar	Annual Operating	Payback	
	Equipment Cost	Labor	Costs	Period	
	\$3,673,500.00	\$114,750.00	\$10,983,700.00	_	
nt	\$6,708,800.00	\$255,000.00	\$8,773,200.00	3.15 Years	
	-\$3,035,300.00	-\$140,250.00	+\$2,210,500.00		

Thank You

Industry Partners

loor Cost		Inomion Iomasetti	Turner Const
	Building Cost	Amec	The New Yor
6,293	\$83,527,260	Flack + Kurtz	PSU OPP
3,700	\$120,607,208		
7,407	-\$37,079,948	AE Faculty	
,		Dr. Chimay Anumba	Professor Ro
		Dr. Andres Lepage	Professor M.
		Dr. Jelena Srebric	Dr. Kevin Ho
		Dr. Richard Mistrick	Dr. John Mes
perating	Payback	Dr. Jim Freihaut	Jim Faust
sts	Period		

Family and Friends

er Construction lew York Times OPP

> or Robert Holland or M. Kevin Parfitt n Houser Messner st

Thank You

TEAM II: BONFANTI | CLARKE | COX | WIACEK